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Overview

 Background

– VHTR M&S Challenges

– SHARP for AFCI NEAMS

– Current Design Practices

 VHTR Advanced M&S Project

– Objectives and Approach

 Key Achievements

– Thermo-fluid

– Coupling Calculations

 Future Work
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Challenges for VHTR Modeling and Simulation

Neutronics

 Double heterogeneity effects due 
to TRISO fuel particles and 
compacts

 Large leakage fraction due to large 
migration area and annular core 
shape

 Strong core/reflector coupling and 
thermal flux peaking

 Increased importance of low lying 
Pu resonances and T-dependent 
graphite scattering kernel for deep-
burn configurations

Thermo-Fluid Dynamics

 Convective heat removal by coolant 

flowing through fuel blocks (for 

various flow conditions) 

 Coolant bypass of coolant channels 

(gap flow)

 Multidimensional conduction within 

blocks

 Radiative redistribution of thermal 

load between blocks

 Large number of coolant channels 

much longer than hydraulic diameter
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Current Design Practices
Network Flow Solvers for Parametric Design Analysis

 Nodal network flow simulators are used 
for parametric design analysis
– Specialized codes like GAS-NET
– Commercial codes like Flownex

 Use same correlation database as 
safety codes

 Allow for direct consideration of bypass 
flows

– Axial core bypass flows
– Radial core bypass flows
– Control rod channel leakage
– Leakage past gap seal of core 

support

– Openings in blocks at periphery
 User must define gap/leakage path 

dimensions and characteristics
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Current Design Practices
Lumped Parameter Models for Safety Analysis

 Entire VHTR core is represented 
as 2 - 4 characteristic channels 
 Heat and mass are 

conserved for the entire 
mass and volume of the 
core regions represented by 
each channels

 All heat transfer is modeled 
as “effective” conduction

 Inner and outer reflector are 
each represented as a single 
channel

 Fuel temperatures are typically 
determined from 2D or 1D single 
channel analysis with lumped 
parameter representations

 Simulations based on 
correlations
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Approaches Thermofluids Analysis and Coupling

 Leverage the prior experiences of NNR high-fidelity simulation tool for LWR 
applications

 Incorporate the commercially-developed STAR-CD/STAR-CCM+ code suite 
directly into the SHARP framework to augment the capabilities provided by 
Nek5000 and make additional modeling improvements to satisfy the target 
performance 

 Improve efficiency of model development

– Enable physics-specific mesh type and resolution selection
• Mapping of structured and unstructured meshes

– Remove additional constraints on coupled model
– Eliminate additional steps required for coupled model development

 Improve efficiency of coupled simulation

– Enable direct communications between physics modules

– Parallelization of data streams and data structures
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DeCART 

Setup Step 1
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Initial Coupled Demonstration 

 Use 3 x 3 LWR demonstration problem from NNR activities
 Demonstrate coupling of new versions of DeCART and STAR-CD using 

initial coupling strategy
– Require that CFD meshes be aligned with DeCART meshes
– Results in > 6 million computational cells in CFD domain
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Coupled Simulation Results

 STAR-CD CFD calculation 
– 36 cores (9 quad-core nodes)

 DeCART neutronics calculation 
– 22 cores (1 core per plane)

– Complete calculation required 
2.25 hours (wall clock time)
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DeCART 
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Non-conformal mesh mapping 

 Relax the constraint to have the DeCART and STAR-CD mesh align
 Perform inexact geometric mesh mapping

– For the 3 x 3 LWR problem, number of mesh reduced by a factor of 4, 
further reduction is possible.
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Geometry
Description 
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Single Channel Simulations for Selection of Modeling 
Parameters

 Initial CFD simulations focused on 
a single coolant channel and the 
facing segments of the 
surrounding fuel compacts

– Low computational cell count 
 fast turnaround
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Baseline Steady State Simulations

 Segregated flow solver
 SIMPLE algorithm with 

Rhie-Chow interpolation for 
pressure-velocity coupling 
and algebraic multi-grid 
preconditioning 

 2nd-order central 
differencing scheme

 Realizable k-epsilon 
turbulence model with a 
two-layer all y+ wall 
treatment (Norris & 
Reynolds) 

 Requires only 30 hours of 
total CPU time 
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Mesh Sensitivity
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Turbulence model selection

 Consider 4 unique turbulence 
models
– Two-layer realizable k-epsilon 
– Two-layer standard k-epsilon

– Stanford V2F

– Algebraic Reynolds Stress 
Model
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Radial gap effects

 Introduced artificially large gap 
between each block in the column 
considered in the single channel 
model
– 3mm gap spacing (0.7mm 

maximum expected)
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Full Block Models

 Using meshing strategies 
developed for single channel, a 
CFD mesh describing a column of 
full blocks has been developed

 Uses 8.8 million computational 
cells
– Polyhedral elements allow 

conformal meshing of solid 
and fluid components
• Improved numerical 

performance for conjugate 
heat transfer

– Includes upper and lower 
plenum volumes

– Flow splits between channels 
are simulated
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Full Block Model Results

 Assume uniform power 
distribution
– Burnable poison 

channels treated as 
fuel

 Simulations require 
17.5 total CPU hours 
on 20 cores
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DeCART/STAR-CD Mesh Mapping

 Initial mapping utility uses a simple approach in which DeCART zones are 
associated with all STAR-CD cells whose centroid falls within that zones. 

 Global conservation is enforced within any single material across the entire 
domain
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Detailed view of mapping at top of fuel block

 TEXT



 Power distribution from DeCART, 
reflects temperature feedback from 
CFD

 Temperature feedback exaggerated, 
due to greatly increased F/M ratio for 
single block

 After CFD initialization, coupled 
simulation required 4.2 hours on 32 
cores for 9 data exchanges
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Key Achievements and Findings in Thermofluids 
Modeling and Coupling

– Developed staged integration strategy for incorporation of STAR-
CD/STAR-CCM+ into SHARP framework
• Build upon NNR experience
• Focus on improvement of simulation and model development efficiency

– Demonstrated methodology for generation of computational meshes 
describing prismatic VHTR geometry from CAD data for both DeCART and 
STAR-CD.

– Completed scoping studies of mesh resolution effects and turbulence 
model performance
• Identified baseline mesh resolution paramters
• Selected realizable k-epsilon model with two-layer (Norris & Reynolds) 

wall treatement
– Developed hexagonal geometry mesh mapping tools for exchange of data 

between DeCART and STAR-CD
– Initiated simulation of first coupled calculation.

• Consider one column of fuel blocks
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Future Work

 Assess the limitations of the existing 2D-1D iteration scheme of DeCART 
– Devise a more robust iterative scheme or an alternative framework for the 3D 

transport calculation 
 Develop enhanced parallel computation schemes for 2D MOC and 3D calculations 

of DeCART
 Develop an optimized, VHTR-specific scheme for iteration between neutronics and 

thermo-fluid simulations based on observations of convergence behavior 
 Extend the DeCART library to include fission products cross sections and 

additional data required for depletion and kinetics analyses 
 Evaluate importance of radiation heat transfer between adjacent prismatic fuel 

blocks relative to multi-dimensional conduction in the graphite block and 
convective heat transfer in the bypass flow channel as predicted by CFD mode 

 Develop software (e.g., java wrapper and interface) for STAR-CD to facilitate its 
coupling with other physics module with minimal reliance upon native features in 
CFD module (in particular, mesh generation) 

 Enable CFD simulations of density-driven natural convection multiple block 
models to capture mixed and natural convection heat transfer in low flow regions 
of the core and improve prediction of pressure losses

 Perform additional verification and validation analyses using HTTR and possibly 
Fort St. Vrain benchmark data  
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